Respuesta :

Answer:

192[tex]\sqrt{3}[/tex] + 912 [tex]in^{2}[/tex]

Step-by-step explanation:

The area of a regular hexagon = [tex]\frac{3\sqrt{3} a^{2} }{2}[/tex] where a is the length of a side.

So. a = 8

Area of the hexagon = [tex]\frac{3\sqrt{3}*8^{2} }{2}[/tex] = [tex]\frac{3\sqrt{3} *64 }{2}[/tex] = [tex]96\sqrt{3}[/tex]

Area of one lateral face = 8(19) = 152

Area of 6 lateral faces = 6(152) = 912

Total surface area = 2([tex]96\sqrt{3}[/tex]) + 912 = 192[tex]\sqrt{3}[/tex] + 912 [tex]in^{2}[/tex]

Hope this helps.