Answer:
[tex]20.4\:\text{m}[/tex]
Explanation:
We can use the following kinematics equation to find the height of the chairlift above the snow:
[tex]v_f^2=v_i^2+2a\Delta y[/tex].
First, let's convert 72 km/h to m/s:
[tex]72\: \text{km/h}=20\:\text{m/s}[/tex]
Since the ski starts with an initial vertical velocity of zero, we have [tex]v_i=0[/tex]. We can now substitute [tex]v_f=20,v_i=0, a=9.8[/tex] and solve for how high the chairlift is above the snow:
[tex]20^2=0^2+2\cdot9.8\cdot \Delta y,\\400=19.6\cdot \Delta y,\\\Delta y =\frac{400}{19.6}=\boxed{20.4\:\text{m}}[/tex].