Answer:
[tex]0.6 + \bar 0.47 = \frac{532}{495}[/tex]
Step-by-step explanation:
Given
[tex]0.6 + \bar 0.47[/tex]
Required
Express as x/y
Let
[tex]x = \bar 0.47[/tex]
This implies that:
[tex]x = 0.4747[/tex] --- (1)
Multiply by 100
[tex]100x = 47.4747[/tex] --- (2)
Subtract 1 from 2
[tex]100x - x = 99x[/tex]
This gives
[tex]47.4747 - 0.4747 = 47[/tex]
So:
[tex]99x = 47[/tex]
Solve for x
[tex]x = \frac{47}{99}[/tex]
This implies that:
[tex]\bar 0.47 = \frac{47}{99}[/tex]
[tex]0.6 + \bar 0.47[/tex] becomes
[tex]0.6 + \bar 0.47 = 0.6 + \frac{47}{99}[/tex]
Express 0.6 as fraction
[tex]0.6 + \bar 0.47 = \frac{6}{10} + \frac{47}{99}[/tex]
Take LCM and solve
[tex]0.6 + \bar 0.47 = \frac{99*6+10*47}{990}[/tex]
[tex]0.6 + \bar 0.47 = \frac{1064}{990}[/tex]
Simplify
[tex]0.6 + \bar 0.47 = \frac{532}{495}[/tex]