Respuesta :
Answer:
Rotating 180 degrees about the origin
Explanation:
Given
[tex]A = (-1,-2); B = (-4,-2); C = (-1,-4)[/tex]
[tex]A' = (1,2); B' = (4,2); C' = (1,4)[/tex]
Required
The rotation rule from ABC to A'B'C'
Using points A and A' as reference, we have:
[tex]A = (-1,-2) \to A' = (1,2)[/tex]
Rewrite as [double negation]:
[tex]A = (-1,-2) \to A' = (-(-1),-(-2))[/tex]
Replace the coordinates with x and y
[tex]i.e.\ x = -1; y = -2[/tex]
[tex]A = (x,y) \to A' = (-x,-y)[/tex]
The rotation rule that describes the above parameter is:
Rotating 180 degrees about the origin