Match each interval with its corresponding average rate of change for q(x) = (x + 3)2.

1. -6 ≤ x ≤ -4
2. -3 ≤ x ≤ 0
3. -6 ≤ x ≤ -3
4. -3 ≤ x ≤ -2
5. -4 ≤ x ≤ -3
6. -6 ≤ x ≤ 0

A)-1
B)1
C)3
D)-3
E)0
F)-4

Respuesta :

Answer:

When we have a function:

f(x)

The average rate of change in the interval a < x < b

is given by:

[tex]r = \frac{f(b) - f(a)}{b - a}[/tex]

Now for each of the given intervals, let's find the average rate of changes.

q(x) = (x + 3)^2

1)  -6 ≤ x ≤ -4

[tex]r = \frac{(-4 + 3)^2 - (-6 + 3)^2}{-4 - (-6)} = \frac{1 - 9}{2} = -4[/tex]

here the correct option is F.

2) -3 ≤ x ≤ 0

[tex]r = \frac{(0 + 3)^2 - (-3 + 3)^2}{0 - (-3)} = \frac{9}{-3} = -3[/tex]

Here the correct option is D.

3) -6 ≤ x ≤ -3

[tex]r = \frac{(-3 + 3)^2 - (-6 + 3)^2}{-3 - (-6)} = \frac{9}{3} = 3[/tex]

Here the correct option is C

4)  -3 ≤ x ≤ -2

[tex]r = \frac{(-2 + 3)^2 - (-3 + 3)^2}{-2 - (-3)} = \frac{1}{1} = 1[/tex]

Here the correct option is B.

5) -4 ≤ x ≤ -3

[tex]r = \frac{(-3 + 3)^2 - (-4 + 3)^2}{-3 - (-4)} = -1/1 = -1[/tex]

Here the correct option is A

6)  -6 ≤ x ≤ 0

[tex]r = \frac{(0 + 3)^2 - (-6 + 3)^2}{0 - (-6)} = \frac{9 - 9}{6} = 0[/tex]

Here the correct option is E.