Answer:
The force will be "125 N".
Explanation:
The given values are:
[tex]F_1=12500 \ N[/tex]
[tex]R_1 = 50 \ cm[/tex]
[tex]R_2=5 \ cm[/tex]
As we know,
⇒ [tex]A=\pi(H)^2[/tex]
then,
⇒ [tex]A_2=\pi(5)^2[/tex]
⇒ [tex]A_1=\pi(50)^2[/tex]
Since,
The pressure on both the pistons are equal, then
⇒ [tex]\frac{F_1}{A_1} =\frac{F_2}{A_2}[/tex]
or,
⇒ [tex]\frac{F_2}{F_1} =\frac{A_2}{A_1}[/tex]
By substituting the values, we get
⇒ [tex]\frac{F_2}{12500} =\frac{\pi(5)^2}{\pi(50)^2}[/tex]
⇒ [tex]\frac{F_2}{12500} =\frac{\pi(25)}{\pi(2500)}[/tex]
⇒ [tex]F_2=\frac{25}{2500}\times 12500[/tex]
⇒ [tex]=0.01\times 12500[/tex]
⇒ [tex]=125 \ N[/tex]