Answer:
[tex]t = 0.375s[/tex]
Step-by-step explanation:
Given
[tex]h(t) = -16t^2 + 4t + 33[/tex] --- driver 1
[tex]Rate = 2ft/s[/tex] -- driver 2
[tex]height = 33ft[/tex]
Required
The time they passed each other
First, we determine the function of driver 2.
We have that:
[tex]Rate = 2ft/s[/tex] and [tex]height = 33ft[/tex]
So, the function is:
[tex]h_2(t) = Height - Rate * t[/tex]
[tex]h_2(t) = 33 - 2t[/tex]
The time they drive pass each other is calculated as:
[tex]h(t) = h_2(t)[/tex]
[tex]-16t^2 + 4t + 33= 33 - 2t[/tex]
Collect like terms
[tex]-16t^2 + 4t + 2t= 33 - 33[/tex]
[tex]-16t^2 + 6t= 0[/tex]
Divide through by 2t
[tex]-8t + 3= 0[/tex]
Solve for -8t
[tex]-8t = -3[/tex]
Solve for t
[tex]t = \frac{-3}{-8}[/tex]
[tex]t = 0.375s[/tex]