There are two tables shown below. Which table shows a constant rate?

Answer:
Option B
Step-by-step explanation:
To calculate the rate of the table is given by the expression,
Rate = [tex]\frac{\triangle y}{\triangle x}[/tex]
For table A,
x y [tex]\triangle y[/tex] [tex]\triangle x[/tex] [tex]\frac{\triangle y}{\triangle x}[/tex]
2 10 - - -
3 15 15 - 10 = 5 3 - 2 = 1 [tex]\frac{5}{1}=5[/tex]
5 20 20 - 15 = 5 5 - 3 = 2 [tex]\frac{5}{2}=2.5[/tex]
8 25 25 - 20 = 5 8 - 5 = 3 [tex]\frac{5}{3}=1.67[/tex]
Therefore, rate is not constant in this table.
For table B
x y [tex]\triangle y[/tex] [tex]\triangle x[/tex] [tex]\frac{\triangle y}{\triangle x}[/tex]
3 9 - - -
5 15 15 - 9 = 6 3 - 5 = 2 [tex]\frac{6}{2}=3[/tex]
8 24 24 - 15 = 9 8 - 5 = 3 [tex]\frac{9}{3}=3[/tex]
10 30 30 - 24 = 6 10 - 8 = 2 [tex]\frac{6}{2}=3[/tex]
Therefore, table B shows a constant rate of 3.
Option B is the correct option.