Respuesta :

Answer:

Step-by-step explanation:

Given function is,

[tex]f(x)=\frac{2x^2+6x}{-4x^2+8x}[/tex]

       [tex]=\frac{2x(x+3)}{-4x(x-2)}[/tex]

This function is not defined at "x(x - 2) = 0"

Therefore, for the values of x = 0 and 2, given function is not defined.

Vertical asymptote → x = 2 [Denominator = 0]

For Horizontal asymptote → [tex][\frac{2x^2}{-4x^2} =-\frac{1}{2}][/tex]

Therefore, horizontal asymptote → y = [tex]-\frac{1}{2}[/tex]

x-intercept,

For f(x) = 0,

Numerator of the function = 0

2x² + 6x = 0

2x(x + 3) = 0

x = -3

Therefore, x - intercept → (-3, 0)

For y-intercept,

x = 0

f(0) = 0

Therefore, graph has no y-intercept.

For holes on the graph,

Since, function is not defined at x = 0,

f(x) = [tex]\frac{(x+3)}{-2(x-2)}[/tex]

f(0) = [tex]\frac{(0+3)}{-2(0-2)}[/tex]

     = [tex]\frac{3}{4}[/tex]

Therefore, hole on the graph → [tex](0, \frac{3}{4})[/tex]