Sasha wrote each of the numbers 21 through 40 on a different index card. She will randomly pick one card. A is the event of picking a number that is divisible by 3. B is the event of picking a prime number.

Respuesta :

Answer:

[tex]Pr(A\ or\ B) = \frac{1}{2}[/tex]

Step-by-step explanation:

Given

[tex]S = \{21,22,23,24,......40\}[/tex]

[tex]n(S) = 20[/tex]

[tex]A = \{21,24,27,30,33,36,39\}[/tex] -- Divisible by 3

[tex]B = \{23, 29, 31, 37\}[/tex] --- Prime numbers

Required

[tex]Pr(A\ or\ B)[/tex]

This is calculated as:

[tex]Pr(A\ or\ B) = Pr(A) + Pr(B) - Pr(A\ n\ B)[/tex]

Using probability formula, we have:

[tex]Pr(A\ or\ B) = \frac{n(A) + n(B) - n(A\ n\ B)}{n(S)}[/tex]

Where:

[tex]A = \{21,24,27,30,33,36,39\}[/tex]

[tex]n(A) = 7[/tex]

[tex]B = \{23, 29, 31, 37\}[/tex]

[tex]n(B) = 4[/tex]

[tex]A\ n\ B =\{\}[/tex]

[tex]n(A\ n\ B) = 0[/tex]

So:

[tex]Pr(A\ or\ B) = \frac{n(A) + n(B) - n(A\ n\ B)}{n(S)}[/tex]

[tex]Pr(A\ or\ B) = \frac{7 + 3 - 0}{20}[/tex]

[tex]Pr(A\ or\ B) = \frac{10}{20}[/tex]

[tex]Pr(A\ or\ B) = \frac{1}{2}[/tex]