Respuesta :

Given:

In ΔOPQ, m∠Q=90°, m∠O=26°, and QO = 4.9 feet.

To find:

The measure of side PQ.

Solution:

In ΔOPQ,

[tex]m\angle O+m\angle P+m\angle Q=180^\circ[/tex]        [Angle sum property]

[tex]26^\circ+m\angle P+90^\circ=180^\circ[/tex]

[tex]m\angle P+116^\circ=180^\circ[/tex]

[tex]m\angle P=180^\circ -116^\circ[/tex]

[tex]m\angle P=64^\circ[/tex]

According to Law of Sines, we get

[tex]\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}[/tex]

Using the Law of Sines, we get

[tex]\dfrac{p}{\sin P}=\dfrac{o}{\sin O}[/tex]

[tex]\dfrac{QO}{\sin P}=\dfrac{PQ}{\sin O}[/tex]

Substituting the given values, we get

[tex]\dfrac{4.9}{\sin (64^\circ)}=\dfrac{PQ}{\sin (26^\circ)}[/tex]

[tex]\dfrac{4.9}{0.89879}=\dfrac{PQ}{0.43837}[/tex]

[tex]\dfrac{4.9}{0.89879}\times 0.43837=PQ[/tex]

[tex]2.38989=PQ[/tex]

Approximate the value to the nearest tenth of a foot.

[tex]PQ\approx 2.4[/tex]

Therefore, the length of PQ is 2.4 ft.

Ver imagen erinna