Respuesta :

Answer:

d. 89°

Step-by-step explanation:

The given measure of the angles formed are;

m∠AED = 48°, m[tex]\widehat{AG}[/tex] = 175°

According to circle theorem, the angle formed by a chord and a tangent of a circle is given by half of the measure of the arc intercepted by the chord in the direction of the angle;

Therefore;

m∠AED = (1/2) × m[tex]\widehat{ABE}[/tex]  = 48°

∴ m[tex]\widehat{ABE}[/tex] = 2 × 48° = 96°

m∠AEF = (1/2) × m[tex]\widehat{AGE}[/tex]

m[tex]\widehat{ABE}[/tex] + m[tex]\widehat{AGE}[/tex] = 360° (angle round a circle)

∴ m[tex]\widehat{AGE}[/tex] = 360° - m[tex]\widehat{ABE}[/tex] = 360° - 96° = 264°

m[tex]\widehat{AGE}[/tex] = m[tex]\widehat{AG}[/tex] + m[tex]\widehat{EG}[/tex]

∴ m[tex]\widehat{EG}[/tex] = m[tex]\widehat{AGE}[/tex] - m[tex]\widehat{AG}[/tex] = 264° - 175° = 89°

m[tex]\widehat{EG}[/tex] = 89°.