The area of the largest cross section of a sphere and the circumference of the sphere are in the ratio 4:1.

The radius of the sphere is ___cm. The circumference of the sphere is about ___cm. The area of the largest cross section is about____ cm. The volume of the sphere is about ___cm​

Respuesta :

Answer:

[tex](a)\ r = 8cm[/tex]

[tex](b\ Area = 200.96cm^2[/tex]

[tex](c)\ Volume = 2143.573cm^3[/tex]

Step-by-step explanation:

The largest cross-section of a sphere is the center.

So, we have:

[tex]A : C = 4 : 1[/tex]

Where

[tex]A = \pi r^2[/tex]

[tex]C =2\pi r[/tex]

Solving (a): The radius

[tex]A : C = 4 : 1[/tex] implies that

[tex]\pi r^2 : 2\pi r = 4 : 1[/tex]

Express as fraction

[tex]\frac{\pi r^2 }{ 2\pi r} = \frac{4 }{ 1}[/tex]

[tex]\frac{\pi r^2 }{ 2\pi r} = 4[/tex]

Divide by [tex]\pi r[/tex]

[tex]\frac{r}{ 2} = 4[/tex]

Make r the subject

[tex]r = 4 * 2[/tex]

[tex]r = 8cm[/tex]

Solving (b): Area of the largest cross-section.

[tex]Area = \pi r^2[/tex]

[tex]Area = 3.14 *8^2[/tex]

[tex]Area = 200.96cm^2[/tex]

Solving (b): Volume of the sphere

[tex]Volume =\frac{4}{3}\pi r^3[/tex]

[tex]Volume =\frac{4}{3} * 3.14 * 8^3[/tex]

[tex]Volume = 2143.573cm^3[/tex]