Stuart is considering a 3/27 balloon mortgage with an interest rate of 4.4to purchase a house for $268,000. What will be his balloon payment at the end of 3 years?

Respuesta :

Answer:

$ 251,619.37        

Step-by-step explanation:

Given that :

Loan = $ 268,000

Interest rate = 4.4 % per annum

4.4%/12 months =   0.366% per month

[tex]$3/27$[/tex] : [tex]$3$[/tex] years to pay and [tex]27[/tex] years amortization

[tex]27[/tex] years x 12 months = [tex]324[/tex] months

Calculating the amount for he monthly amortization,

[tex]$A=P \times \frac{r(1+r)^n}{(1+r)^n-1}$[/tex]

[tex]$A=268,000 \times \frac{0.00366(1+0.0366)^{324}}{(1+0.00366)^{324}-1}$[/tex]

[tex]$A=268,000 \times \frac{0.0119}{2.266}$[/tex]

A = 1407.41

Therefore, the future value is given by :

[tex]$FV=PV(1+r)^n-P\left[\frac{(1+r)^n-1}{r}\right]$[/tex]

where, FV = future value ( balloon balance)

            PV = present value (original balance)

            P = payment

            r = rate per payment

            n = number of payments

[tex]$FV=268,000(1+0.00366)^{36}-1407.41\left[\frac{(1+0.00366)^{36}-1}{0.00366}\right]$[/tex]

[tex]$FV = 305670.10- 54050.73 $[/tex]

FV = 251619.37

Therefore, Stuart's balloon payment will be $ 251,619.37