In the diagram shown, points B and D lie on sides AC and AE such that BD is parallel to CE . If 10AB, 16BC , and 13AD then find the length of AE ?

Answer:
[tex] \displaystyle \overline{AE} = 33.8[/tex]
Step-by-step explanation:
By triangle similarity theorem we acquire:
[tex] \displaystyle \frac{10}{16 + 10} = \frac{13}{ AE } [/tex]
since AE=AD+ED substitute:
[tex] \displaystyle \frac{10}{16 + 10} = \frac{13}{ 13 + ED} [/tex]
simplify addition:
[tex] \displaystyle \frac{10}{26} = \frac{13}{ 13 + ED} [/tex]
cross multiplication:
[tex] \displaystyle 10(13 + ED) = 26 \times 13[/tex]
distribute:
[tex] \displaystyle 13 0+ 10ED = 26 \times 13[/tex]
simplify multiplication:
[tex] \displaystyle 13 0+ 10ED =338[/tex]
cancel 130 from both sides:
[tex] \displaystyle10ED =208[/tex]
divide both sides by 10:
[tex] \displaystyle \: ED =20.8[/tex]
so, the measure of side AE=20.8+13=33.8