Respuesta :

Answer:

-4,539

Step-by-step explanation:

Given series is: 147 + 130 + 113 + 96 + . . .

Where first term a = 147

Common Difference d = 130 - 147 = - 17

No. of terms n = 34

To find: [tex] S_{34}[/tex]

By sum of n terms of an Arithmetic Progression, we have:

[tex] S_{n}=\frac{n}{2}[2a + (n-1)d][/tex]

Plugging the values of a, d and n in the above equation, we find:

[tex] S_{34}=\frac{34}{2}[2(147) + (34-1)(-17)][/tex]

[tex]\therefore S_{34}=17[294 + (33)(-17)][/tex]

[tex]\therefore S_{34}=17[294 - 561][/tex]

[tex]\therefore S_{34}=17[-267][/tex]

[tex]\therefore S_{34}=-4,539[/tex]