Answer:
The first 12 terms of the series are represented by:
[tex]f(12) = \Sigma\limits_{i = 1}^{12} [(-1)^{n}\cdot 2^{n-1}] = -1 + 2 - 4 + 8 - 16 + 32 - 64 + 128 -256 + 512 - 1024 + 2048[/tex]
Step-by-step explanation:
The summation notation for the series [tex]-1 + 2 -4 + 8 -16...[/tex] is represented by the expression [tex]f(n) = \Sigma\limits_{i = 1}^{n} [(-1)^{n} \cdot 2^{n-1}][/tex].
The first 12 terms of the series are represented by:
[tex]f(12) = \Sigma\limits_{i = 1}^{12} [(-1)^{n}\cdot 2^{n-1}] = -1 + 2 - 4 + 8 - 16 + 32 - 64 + 128 -256 + 512 - 1024 + 2048[/tex]