Respuesta :

Answer:

[tex]x[/tex]-intercepts at [tex](1,0)[/tex] and [tex](0.8,0)[/tex]

Step-by-step explanation:

A quadratic in the form [tex]ax^2+bx+c=y[/tex] crosses the [tex]x[/tex]-axis when [tex]y=0[/tex].

The first step is replacing [tex]f(x)[/tex] with [tex]y[/tex].

So: [tex]y= -5x^2+9x-4[/tex]. With the information above, we can find the [tex]x[/tex] intercepts by setting [tex]y = 0[/tex].

Therefore [tex]0=-5x^2+9x-4[/tex].

Now we can use the quadratic formula because it is in the form [tex]ax^2+bx+c=0[/tex].

Note the quadratic formula: [tex]\frac{-b\frac{+}{-}\sqrt{b^2-4ac} }{2a } = x[/tex].

To find the values of [tex]a[/tex],[tex]b[/tex] and [tex]c[/tex] we can compare the equation to the general equation.

Therefore: [tex]a=-5[/tex], [tex]b=9[/tex] and [tex]c=-4[/tex].

Now put these values into the quadratic formula:

[tex]\frac{-9\frac{+}{-}\sqrt{(9)^2-4(-5)(-4)} }{2(-5) } = x[/tex]

And simplify:

[tex]\frac{-9\frac{+}{-}\sqrt{81-80} }{-10 }[/tex] , [tex]\frac{-9\frac{+}{-}\sqrt{1} }{-10 }[/tex].

[tex]\sqrt{1} =1[/tex], therefore [tex]x = \frac{-9\frac{+}{-}1 }{-10 }[/tex]

Now we can have two values for [tex]x[/tex]. One when we take away the discriminant ([tex]b^2-4ac[/tex]) and one when we add it.

So [tex]x = \frac{-10}{-10} = 1[/tex]

or

[tex]x = \frac{-8}{-10} = 0.8[/tex]

Therefore [tex]x[/tex]-intercepts at [tex](1,0)[/tex] and [tex](0.8,0)[/tex]