Answer:
The correct answer is "53.15 days".
Explanation:
Given that:
Half life of [tex]131_{I}[/tex],
[tex]T_{\frac{1}{2} }= 8 \ days[/tex]
To find t when R will be "1%" of [tex]R_o[/tex], then
⇒ [tex]R=\frac{1}{100}R_o[/tex]
As we know,
⇒ [tex]R=R_o e^{-\lambda t}[/tex]
or,
∴ [tex]e^{\lambda t}=\frac{R_o}{R}[/tex]
By putting the values, we get
[tex]=\frac{R_o}{\frac{R}{100} }[/tex]
[tex]=100[/tex]
We know that,
Decay constant, [tex]\lambda = \frac{ln2}{T_{\frac{1}{2} }}[/tex]
hence,
⇒ [tex]\lambda t=ln100[/tex]
[tex]t=\frac{ln100}{\lambda}[/tex]
[tex]=\frac{ln100}{\frac{ln2}{8} }[/tex]
[tex]=53.15 \ days[/tex]