Respuesta :

Answer:

[tex]f(x) = 3x^2+8[/tex]

Step-by-step explanation:

We are given the first derivative of [tex]f(x)[/tex] and the value of [tex]f(0)[/tex].

To go from the first derivative to the original function, we integrate.

Therefore:

[tex]f(x) = \int {6x} \, dx[/tex]

To integrate, we add 1 to the power and divide by the new power:

[tex]\int {6x} \, dx = \frac{6x^2}{2} =3x^2+C[/tex]

Because we have an indefinite integral, we have to add the constant, [tex]c[/tex], to the end.

So: [tex]f(x) = 3x^2+C[/tex]

We know [tex]f(0)[/tex] so we can find the constant [tex]C[/tex].

[tex]f(0)=3(0)^2+C=8[/tex]

[tex]C=8[/tex]

Therefore [tex]f(x) = 3x^2+8[/tex]

f(x)=3x2+8 . Yw. Baiiii