Respuesta :

Answer:

[tex]2(x - 5) ( 9x - 2)[/tex]

Step-by-step explanation:

((2•3^2x^2) -  94x) +  20

Pull like factors :

  18x^2 - 94x + 20  =   2 • (9x^2 - 47x + 10)

Factor

 9x^2 - 47x + 10

The first term is,  9x^2  its coefficient is  9.

The middle term is,  -47x  its coefficient is  -47.

The last term, "the constant", is  +10

Step-1: Multiply the coefficient of the first term by the constant   9 • 10 = 90

Step-2: Find two factors of  90  whose sum equals the coefficient of the middle term, which is   -47.

     -90    +    -1    =    -91

     -45    +    -2    =    -47

Step-3: Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -45  and  -2

                    9x^2 - 45x - 2x - 10

Step-4: Add up the first 2 terms, pulling out like factors :

                   9x • (x-5)

             Add up the last 2 terms, pulling out common factors :

                   2 • (x-5)

Step-5: Add up the four terms of step 4 :

                   (9x-2)  •  (x-5)

            Which is the desired factorization

thus the answer is

[tex]2(x - 5) ( 9x - 2)[/tex]

msm555

Answer:

Solution given:

18x²-94x+20

taking common

2(9x²-47x+10)

doing middle term factorization

90=45*2

2(9x²-45x-2x+10)

2(9x(x-5)-2(x-5))

2(9x-2)(x-5)

2(x-5)(9x-2)

Last one is a required answer.