Respuesta :

Answer:

[tex]\cos(\frac{1}{2}A) = {\frac{\sqrt{3}}{2}[/tex]

Step-by-step explanation:

Given

[tex]\cos A = \frac{1}{2}[/tex]

Required

Determine [tex]\cos(\frac{1}{2}A)[/tex]

To do this, we make use of the following identity

[tex]\cos(\frac{1}{2}A) = \sqrt{\frac{\cos A+1}{2}}[/tex]

Substitute: [tex]\cos A = \frac{1}{2}[/tex]

[tex]\cos(\frac{1}{2}A) = \sqrt{\frac{\frac{1}{2}+1}{2}}[/tex]

Solve the numerator

[tex]\cos(\frac{1}{2}A) = \sqrt{\frac{\frac{2+1}{2}}{2}}[/tex]

[tex]\cos(\frac{1}{2}A) = \sqrt{\frac{\frac{3}{2}}{2}}[/tex]

Rewrite as:

[tex]\cos(\frac{1}{2}A) = \sqrt{\frac{3}{2} * \frac{1}{2}}[/tex]

[tex]\cos(\frac{1}{2}A) = \sqrt{\frac{3}{4}}[/tex]

Take square roots

[tex]\cos(\frac{1}{2}A) = {\frac{\sqrt{3}}{2}[/tex]