contestada

PLSSSSS HELP I DONT GET THIS PROBLEMMMM
...Using the above data table and graph, calculate the total energy in Joules required to raise the temperature of 15.0g of ice at -5.00ºC to steam at 35.0ºC

a) 7730 J
b) 7740 J
c) 7370 J
d) 7340 J

PLSSSSS HELP I DONT GET THIS PROBLEMMMM Using the above data table and graph calculate the total energy in Joules required to raise the temperature of 150g of i class=

Respuesta :

Answer:

C. 7370 joules.

Explanation:

There is a mistake in the statement. Correct form is described below:

Using the above data table and graph, calculate the total energy in Joules required to raise the temperature of 15 grams of ice at -5.00 °C to water at 35 °C.

The total energy needed to raise the temperature is the combination of latent and sensible heats, all measured in joules, and represented by the following model:

[tex]Q = m\cdot [c_{i} \cdot (T_{2}-T_{1})+L_{f} + c_{w}\cdot (T_{3}-T_{2})][/tex] (1)

Where:

[tex]m[/tex] - Mass of the sample, in grams.

[tex]c_{i}[/tex] - Specific heat of ice, in joules per gram-degree Celsius.

[tex]c_{w}[/tex] - Specific heat of water, in joules per gram-degree Celsius.

[tex]L_{f}[/tex] - Latent heat of fusion, in joules per gram.

[tex]T_{1}[/tex] - Initial temperature of the sample, in degrees Celsius.

[tex]T_{2}[/tex] - Melting point of water, in degrees Celsius.

[tex]T_{3}[/tex] - Final temperature of water, in degrees Celsius.

[tex]Q[/tex] - Total energy, in joules.

If we know that [tex]m = 15\,g[/tex], [tex]c_{i} = 2.06\,\frac{J}{g\cdot ^{\circ}C}[/tex], [tex]c_{w} = 4.184\,\frac{J}{g\cdot ^{\circ}C}[/tex], [tex]L_{f} = 334.72\,\frac{J}{g}[/tex], [tex]T_{1} = -5\,^{\circ}C[/tex], [tex]T_{2} = 0\,^{\circ}C[/tex] and [tex]T_{3} = 35\,^{\circ}C[/tex], then the final energy to raise the temperature of the sample is:

[tex]Q = (15\,g)\cdot \left[\left(2.06\,\frac{J}{g\cdot ^{\circ}C} \right)\cdot (5\,^{\circ}C)+ 334.72\,\frac{J}{g} + \left(4.184\,\frac{J}{g\cdot ^{\circ}C}\right)\cdot (35\,^{\circ}C) \right][/tex]

[tex]Q = 7371.9\,J[/tex]

Hence, the correct answer is C.