Find the Area of the figure below, composed of a rectangle with a semicircle
removed from it. Round to the nearest tenths place.

Find the Area of the figure below composed of a rectangle with a semicircle removed from it Round to the nearest tenths place class=

Respuesta :

Answer:

Area of the figure = 25.7 units²

Step-by-step explanation:

Area of the given figure = Area of rectangle ABCD - Area of the semicircle with diameter CD

Area of the rectangle ABCD = Length × Width

                                               = BC × AB

                                               = 8 × 4

                                                = 32 units²

Area of the semicircle = [tex]\frac{1}{2}\pi r^{2}[/tex]

Here, r = radius of the semicircle

r = [tex]\frac{\text{Diameter}}{2}[/tex]

r = [tex]\frac{1}{2}(CD)[/tex]

r = [tex]\frac{4}{2}[/tex]

r = 2 units

Therefore, area of the semicircle = [tex]\frac{1}{2}\pi (2)^2[/tex]

                                                       = 2π

                                                       = 6.28 units²

Area of the given figure = 32 - 6.28

                                         = 25.72 units²

                                         ≈ 25.7 units²

Ver imagen eudora