Which expressions correctly represent the area of the triangle XYZ?

Answer:
Options (2) and Option (1)
Step-by-step explanation:
Area of the ΔXYZ = [tex]\frac{1}{2}(\text{Base})(\text{Height})[/tex]
= [tex]\frac{1}{2}(XZ)h[/tex]
= [tex]\frac{1}{2}(18)h[/tex]
By applying sine rule in the ΔYPZ,
sin(38°) = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]
sin(38°) = [tex]\frac{h}{14}[/tex]
h = 14[sin(38°)]
Therefore, area of the given triangle = [tex]\frac{1}{2}(18)(14)sin(38)[/tex]
By applying sine rule in ΔYPZ,
sin(58°) = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]
sin(58°) = [tex]\frac{h}{10}[/tex]
h = 10sin(58°)
Area of ΔXYZ = [tex]\frac{1}{2}(18)(10)sin(58)[/tex]
Therefore, Options (2) and Option (1) are the correct options.