Find the surface area and volume of the pyramid.

Given:
The figure of a square base pyramid.
To find:
The area of volume of the pyramid.
Solution:
The area of square base is:
[tex]B=(side)^2[/tex]
[tex]B=(16)^2[/tex]
[tex]B=256[/tex]
Area of one triangular side of the pyramid is:
[tex]A_1=\dfrac{1}{2}\times base\times height[/tex]
[tex]A_1=\dfrac{1}{2}\times 16\times 13[/tex]
[tex]A_1=104[/tex]
Now, the total surface area of the pyramid is:
[tex]A=B+4A_1[/tex]
[tex]A=256+4(104)[/tex]
[tex]A=256+416[/tex]
[tex]A=672[/tex]
Therefore, the surface area of the pyramid is 672 square m.
The volume of the pyramid is:
[tex]V=\dfrac{1}{3}Bh[/tex]
Where, B is the base area and h is the vertical height of the pyramid.
Substituting [tex]B=256,\ h=6[/tex], we get
[tex]V=\dfrac{1}{3}(256)(h)[/tex]
[tex]V=(256)(2)[/tex]
[tex]V=512[/tex]
Therefore, the volume of the pyramid is 512 cubic meters.
Hence the correct option is d.