Respuesta :

Given:

The figure of a square base pyramid.

To find:

The area of volume of the pyramid.

Solution:

The area of square base is:

[tex]B=(side)^2[/tex]

[tex]B=(16)^2[/tex]

[tex]B=256[/tex]

Area of one triangular side of the pyramid is:

[tex]A_1=\dfrac{1}{2}\times base\times height[/tex]

[tex]A_1=\dfrac{1}{2}\times 16\times 13[/tex]

[tex]A_1=104[/tex]

Now, the total surface area of the pyramid is:

[tex]A=B+4A_1[/tex]

[tex]A=256+4(104)[/tex]

[tex]A=256+416[/tex]

[tex]A=672[/tex]

Therefore, the surface area of the pyramid is 672 square m.

The volume of the pyramid is:

[tex]V=\dfrac{1}{3}Bh[/tex]

Where, B is the base area and h is the vertical height of the pyramid.

Substituting [tex]B=256,\ h=6[/tex], we get

[tex]V=\dfrac{1}{3}(256)(h)[/tex]

[tex]V=(256)(2)[/tex]

[tex]V=512[/tex]

Therefore, the volume of the pyramid is 512 cubic meters.

Hence the correct option is d.