Answer:
[tex]9c^3 - 12c^2 - 18c - 24= [3c^2 - 6][3c - 4][/tex]
Step-by-step explanation:
Given
[tex]9c^3 - 12c^2 - 18c - 24[/tex]
Required
Factor
Group into 2
[tex][9c^3 - 12c^2] - [18c + 24][/tex]
Factorize each group
[tex]3c^2[3c - 4] - 6[3c - 4][/tex]
Factor out 3c - 4
[tex][3c^2 - 6][3c - 4][/tex]
Hence:
[tex]9c^3 - 12c^2 - 18c - 24= [3c^2 - 6][3c - 4][/tex]