Respuesta :

Answer:

(1)

[tex]a = \frac{3\sqrt 3}{2}[/tex]

[tex]b = \frac{3}{2}[/tex]

(2)

[tex]a = \sqrt 6[/tex]

[tex]b = \sqrt 2[/tex]

Step-by-step explanation:

Solving (1):

Considering

[tex]\theta = 60^o[/tex]

We have:

[tex]\sin(\theta) = \frac{Opposite}{Hypotenuse}[/tex]

This gives:

[tex]\sin(60^o) = \frac{a}{3}[/tex]

Solve for a

[tex]a = 3 * \sin(60^o)[/tex]

[tex]\sin(60^o) = \frac{\sqrt 3}{2}[/tex]

So:

[tex]a = 3 * \frac{\sqrt 3}{2}[/tex]

[tex]a = \frac{3\sqrt 3}{2}[/tex]

To solve for b, we make use of Pythagoras theorem

[tex]3^2 = a^2 + b^2[/tex]

This gives

[tex]3^2 = (\frac{3\sqrt 3}{2})^2 + b^2[/tex]

[tex]9 = \frac{9*3}{4} + b^2[/tex]

[tex]9 = \frac{27}{4} + b^2[/tex]

Collect like terms

[tex]b^2 = 9 - \frac{27}{4}[/tex]

Take LCM and solve

[tex]b^2 = \frac{36 - 27}{4}[/tex]

[tex]b^2 = \frac{9}{4}[/tex]

Take square roots

[tex]b = \frac{3}{2}[/tex]

Solving (2):

Considering

[tex]\theta = 60^o[/tex]

We have:

[tex]\sin(\theta) = \frac{Opposite}{Hypotenuse}[/tex]

This gives:

[tex]\sin(60^o) = \frac{a}{2\sqrt 2}[/tex]

Solve for a

[tex]a = 2\sqrt 2 * \sin(60^o)[/tex]

[tex]\sin(60^o) = \frac{\sqrt 3}{2}[/tex]

So:

[tex]a = 2\sqrt 2 * \frac{\sqrt 3}{2}[/tex]

[tex]a = \sqrt 2 * \sqrt 3[/tex]

[tex]a = \sqrt 6[/tex]

To solve for b, we make use of Pythagoras theorem

[tex](2\sqrt 2)^2 = a^2 + b^2[/tex]

This gives

[tex](2\sqrt 2)^2 = (\sqrt 6)^2 + b^2[/tex]

[tex]8 = 6 + b^2[/tex]

Collect like terms

[tex]b^2 = 8 - 6[/tex]

[tex]b^2 = 2[/tex]

Take square roots

[tex]b = \sqrt 2[/tex]