Respuesta :

Answer:

Hypotenuse: 41 meters, Long leg: 40 meters, Short leg: 9 meters.

Step-by-step explanation:

According to the statement, we have the following information about the lengths of the right triangle:

Hypotenuse

[tex]3\cdot x + 14[/tex]

Long leg

[tex]3\cdot x + 13[/tex]

Short leg

[tex]x[/tex]

By the Pythagoric Theorem, we have the following expression:

[tex](3\cdot x + 14)^{2} = x^{2} + (3\cdot x + 13)^{2}[/tex] (1)

[tex]9\cdot x^{2}+84\cdot x + 196 = x^{2} + 9\cdot x^{2} + 78\cdot x + 169[/tex]

[tex]9\cdot x^{2} + 84\cdot x + 196 = 10\cdot x^{2} + 78\cdot x +169[/tex]

[tex]x^{2} -6\cdot x -27 = 0[/tex]

[tex](x-9)\cdot (x+3) = 0[/tex]

As length is a positive variable by nature, then the only possible solution is [tex]x = 9[/tex]. Lastly, the side lengths of the right triangle are:

Hypotenuse: 41 meters, Long leg: 40 meters, Short leg: 9 meters.