Respuesta :

Given:

[tex]MZ\cong PZ[/tex]

[tex]m\angle MFZ=(x+9)^\circ[/tex]

[tex]m\angle PFZ=(2x-1)^\circ[/tex]

To find:

The measure of angle MFZ.

Solution:

In triangles MFZ and PFZ,

[tex]m\angle FMZ\cong \angle FPZ[/tex]           (Right angle)

[tex]MZ\cong PZ[/tex]           (Given)

[tex]FZ\cong FZ[/tex]           (Common side)

[tex]\Delta MFZ\cong \Delta PFZ[/tex]                  (HL congruent postulate)

[tex]\angle MFZ\cong \angle PFZ[/tex]           (CPCTC)

[tex]m\angle MFZ=m\angle PFZ[/tex]

[tex]x+9=2x-1[/tex]

[tex]9+1=2x-x[/tex]

[tex]10=x[/tex]

The value of x is 10.

The measure of angle MFZ is:

[tex]m\angle MFZ=(x+9)^\circ[/tex]

[tex]m\angle MFZ=(10+9)^\circ[/tex]

[tex]m\angle MFZ=19^\circ[/tex]

Therefore, the measure of angle MFZ is 19 degrees.