Respuesta :

Answer:

21[tex]\sqrt{5}[/tex]

Step-by-step explanation:

Using the rule of radicals

[tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex] ⇔ [tex]\sqrt{ab}[/tex]

Simplifying [tex]\sqrt{45}[/tex]

= [tex]\sqrt{9(5)}[/tex] = [tex]\sqrt{9}[/tex] × [tex]\sqrt{5}[/tex] = 3[tex]\sqrt{5}[/tex]

Then

3[tex]\sqrt{5}[/tex] + 6[tex]\sqrt{45}[/tex]

= 3[tex]\sqrt{5}[/tex] + 6(3[tex]\sqrt{5}[/tex] )

= 3[tex]\sqrt{5}[/tex] + 18[tex]\sqrt{5}[/tex]

= 21[tex]\sqrt{5}[/tex]

Answer:

[tex]21\sqrt{5}[/tex]

Step-by-step explanation:

Pull terms out from under the radical, assuming positive real numbers.