Respuesta :

ajjabr

Answer:

[tex]log {}^{3} {} (5x + 1) = 4 \\ log(logx) = 4 \\ log {}^{4} (2x + 6) - log {}^{4} (x - 1) = 1 \\ log_{ {}^{4} }(x) + log{}^{2} (x + 4) = 5 \: \: \: \: \: \: \: \: \: \: \: \: \: 4ln(2x - 1) + 3 = 11 \\ log(x { }^{2} ) = (logx)logx = 49 \\ log {}^{3} ( log {}^{2} x) = 2[/tex]

Explanation:

That is just an example of what it means