A single-story retail store wishes to supply all its lighting requirement with batteries charged by photovoltaic cells. The PV cells will be mounted on the horizontal rooftop. The time-averaged lighting requirement is 10 W/m2 , the annual average solar irradiance is 150 W/m2 , the PV efficiency is 10%, and the battery charging/discharging efficiency is 80%. What percentage of the roof area will the PV cells occupy

Respuesta :

Answer:

83.33% of the roof area will be occupied by the PV cells

Explanation:

Given the data in the question;

time-averaged lighting requirement [tex]P_{lighting[/tex] = 10 W/m²

the annual average solar irradiance [tex]q_{solar[/tex] = 150 W/m²

the PV efficiency η[tex]_{pv[/tex] = 10% = 0.1

battery charging/discharging efficiency η[tex]_{battery[/tex] = 80% = 0.8

we know that; Annual average power to the light = [tex]P_{lighting[/tex] × A[tex]_{roof[/tex]

Now, the electrical power delivered by the solar cell battery system will be;

⇒  [tex]q_{solar[/tex] × A[tex]_{pv[/tex] × η[tex]_{pv[/tex] × η[tex]_{battery[/tex]

[tex]P_{lighting[/tex]A[tex]_{roof[/tex] = [tex]q_{solar[/tex] × A[tex]_{pv[/tex] × η[tex]_{pv[/tex] × η[tex]_{battery[/tex]

Such that;

A[tex]_{pv[/tex] = [tex]P_{lighting[/tex]A[tex]_{roof[/tex] / [tex]q_{solar[/tex] × A[tex]_{pv[/tex] × η[tex]_{pv[/tex] × η[tex]_{battery[/tex]

A[tex]_{pv[/tex] / A[tex]_{roof[/tex] = [tex]P_{lighting[/tex] /  [tex]q_{solar[/tex] × η[tex]_{pv[/tex] × η[tex]_{battery[/tex]

so we substitute

A[tex]_{pv[/tex] / A[tex]_{roof[/tex] = 10 W/m² / [ 150 W/m² × 0.1 × 0.8 ]

A[tex]_{pv[/tex] / A[tex]_{roof[/tex] = 10 W/m² / 12 W/m²

A[tex]_{pv[/tex] / A[tex]_{roof[/tex] = 0.8333

A[tex]_{pv[/tex] / A[tex]_{roof[/tex] = (0.8333 × 100)%

A[tex]_{pv[/tex] / A[tex]_{roof[/tex] = 83.33%

Therefore, 83.33% of the roof area will be occupied by the PV cells.