Answer:
Option B
Step-by-step explanation:
Average rate of change of a function 'f' in the interval x = a and x = b is given by,
Average rate of change of change = [tex]\frac{f(b)-f(a)}{b-a}[/tex]
Given function is,
g(x) = [tex]\frac{5}{x-1}+2[/tex]
We have to calculate the rate of change in the interval [-4, 3],
Average rate of change = [tex]\frac{g(3)-g(-4)}{3-(-4)}[/tex]
g(3) = [tex]\frac{5}{3-1}+1[/tex]
= 2.5 + 1
= 3.5
g(-4) = [tex]\frac{5}{-4-1}+1[/tex]
= -1 + 1
= 0
Average rate of change = [tex]\frac{3.5-0}{3+4}[/tex]
= [tex]\frac{3.5}{7}[/tex]
= [tex]\frac{1}{2}[/tex]
Therefore, Option B will be the answer.