Respuesta :
Answer:
After about 22 years, the population of each community will be approximately 12400
Step-by-step explanation:
Given
[tex]y_1 = 10000(1.01)^x[/tex]
[tex]y_2 = 8000(1.02)^x[/tex]
Required
The population of each community after certain years.
[tex](a)\ x = 12[/tex]
We have:
[tex]y_1 = 10000(1.01)^x[/tex] [tex]y_2 = 8000(1.02)^x[/tex]
[tex]y_1 = 10000(1.01)^{12[/tex] [tex]y_2 = 8000(1.02)^{12[/tex]
[tex]y_1 = 11268.25[/tex] [tex]y_2 = 10145.93[/tex]
[tex]y_1 \approx 11300[/tex] [tex]y_2 \approx 10100[/tex]
[tex](b)\ x = 22[/tex]
We have:
[tex]y_1 = 10000(1.01)^{22[/tex] [tex]y_2 = 8000(1.02)^{22[/tex]
[tex]y_1 = 12447.158[/tex] [tex]y_2 = 12367.83[/tex]
[tex]y_1 \approx 12400[/tex] [tex]y_2 \approx 12400[/tex]
[tex](c)\ x = 16[/tex]
We have:
[tex]y_1 = 10000(1.01)^{16[/tex] [tex]y_2 = 8000(1.02)^{16[/tex]
[tex]y_1 = 11725.78[/tex] [tex]y_2 = 10982.28[/tex]
[tex]y_1 \approx 11700[/tex] [tex]y_2 \approx 11000[/tex]
[tex](d)\ x = 20[/tex]
We have:
[tex]y_1 = 10000(1.01)^{20[/tex] [tex]y_2 = 8000(1.02)^{20[/tex]
[tex]y_1 = 12201.90[/tex] [tex]y_2 = 11887.60[/tex]
[tex]y_1 \approx 12200[/tex] [tex]y_2 = 11900[/tex]