Respuesta :
Answer:
It would take 4 years. The formula for continuously compounded interest is: where P is the principal, r is the interest rate as a decimal number, and t is the number of years.
Step-by-step explanation:
You deposit $800 in an account that pays 3.6% annual interest compounded quarterly. after 11 years your balance first exceed $1200.
How to find the compound interest?
If n is the number of times the interested is compounded each year, and 'r' is the rate of compound interest annually, then the final amount after 't' years would be:
[tex]a = p(1 + \dfrac{r}{n})^{nt}[/tex]
You deposit $800 in an account that pays 3.6% annual interest compounded quarterly.
[tex]a = p(1 + \dfrac{r}{n})^{nt}[/tex]
[tex]1200 = 800(1 + \dfrac{3.6}{4})^{4t}\\\\300 = (1 + 0.9)^{4t}\\\\t = 11.4[/tex]
Learn more about compound interest here:
https://brainly.com/question/1329401
#SPJ2