These triangles are similar and the sides are proportional. Which proportion correctly describes the situation below?

These triangles are similar and the sides are proportional Which proportion correctly describes the situation below class=

Respuesta :

Answer:

Option (3)

Step-by-step explanation:

"If two triangles are similar, their corresponding sides are proportional."

We will check each proportionality ratio given in the options for the given property,

Option (1),

[tex]\frac{QB}{DM}=\frac{DF}{QL}=\frac{LB}{MF}[/tex]

[tex]\frac{3.5}{2}=\frac{5}{8.75}=\frac{10.5}{6}[/tex]

[tex]\frac{7}{4}=\frac{4}{7}=\frac{7}{4}[/tex]

But [tex]\frac{7}{4}\neq \frac{4}{7}[/tex].

Therefore, this option is not the answer.

Option (2),

[tex]\frac{FM}{LB}=\frac{BQ}{MD}=\frac{QL}{DF}[/tex]

[tex]\frac{6}{10.5}=\frac{3.5}{2}=\frac{8.75}{5}[/tex]

[tex]\frac{4}{7}=\frac{7}{4}=\frac{7}{4}[/tex]

But [tex]\frac{4}{7}\neq \frac{7}{4}[/tex],

Therefore, this option is not the option.

Option (3),

[tex]\frac{BQ}{MD}=\frac{QL}{DF}=\frac{BL}{MF}[/tex]

[tex]\frac{3.5}{2}=\frac{8.75}{5}=\frac{10.5}{6}[/tex]

[tex]\frac{7}{4}=\frac{7}{4}=\frac{7}{4}[/tex]

Therefore, this option is the answer.

Option (4),

[tex]\frac{6}{10.5}=\frac{2}{3.5}=\frac{5}{10.5}[/tex]

[tex]\frac{4}{7}=\frac{4}{7}=\frac{10}{21}[/tex]

But, [tex]\frac{4}{7}\neq \frac{10}{21}[/tex]

Therefore, this is not the correct option.