Respuesta :
Answer:
The quadrilaterals will be congruent
The quadrilateral will now appear in Quadrant 2
Step-by-step explanation:
Given
[tex]W = (-7,-2)[/tex]
[tex]X= (-4,-2)[/tex]
[tex]Z = (-6,-6)[/tex]
[tex]Y =(-3,-7)[/tex]
Rotation across 180 degrees
Reflection across y-axis
Required
The true statement
Using point W as a point of reference; We have:
[tex]W = (-7,-2)[/tex]
1. Rotation across 180 degrees
The rule is:
[tex](x,y) \to (-x,-y)[/tex]
So:
[tex]W(-7,-2) \to W'(7,2)[/tex]
2. Reflection across y-axis
The rule is:
[tex](x,y) \to (-x,y)[/tex]
So:
[tex]W'(7,2) \to (-7,2)[/tex]
Using the above transformation on the other points; We have:
[tex]W(-7,-2) \to W"(-7,2)[/tex]
[tex]X (-4,-2) \to X "(-4,2)[/tex]
[tex]Z (-6,-6) \to Z" (-6,6)[/tex]
[tex]Y(-3,-7) \to Y"(-3,7)[/tex]
Plot the above points on a grid (see attachment).
From the grid, we can conclude that: the quadrilaterals will be congruent , and it will appear in Quadrant 2.

Answer:
what the guy above me said
Step-by-step explanation:
i copied his answer got it right