A hospital recorded the weights, in ounces, of newborn babies for two weeks. The

results are listed below.

Weights of babies born during week one: 128, 105, 80, 82, 96, 98, 87, 100, 112, 126

Weights of babies born during week two: 75, 85, 90, 97, 89, 105, 110, 127, 129, 130

Which statement is true?

Respuesta :

Answer:

The standard deviation for week two was about 3 ounces more than the standard deviation for week one

Step-by-step explanation:

Given

[tex]Week\ 1: 128, 105, 80, 82, 96, 98, 87, 100, 112, 126[/tex]

[tex]Week\ 2: 75, 85, 90, 97, 89, 105, 110, 127, 129, 130[/tex]

See attachment for options

Required

The true statement

Checking the standard deviation

For week 1

Calculate the mean:

[tex]\bar x = \frac{\sum x}{n}[/tex]

[tex]\bar x = \frac{128+ 105+ 80+ 82+ 96+ 98+ 87+ 100+ 112+ 126}{10}[/tex]

[tex]\bar x = \frac{1014}{10}[/tex]

[tex]\bar x_1 = 101.4[/tex]

Then standard deviation

[tex]\sigma = \sqrt{\frac{\sum(x - \bar x)^2}{n}}[/tex]

[tex]\sigma_1 = \sqrt{\frac{(128 - 101.4)^2 +............+ (126- 101.4)^2}{10}}[/tex]

[tex]\sigma_1 = \sqrt{\frac{2522.4}{10}}[/tex]

[tex]\sigma_1 = \sqrt{252.24[/tex]

[tex]\sigma_1 = 15.88[/tex]

For week 2, we have:

[tex]\bar x = \frac{75+ 85+ 90+ 97+ 89+ 105+ 110+ 127+ 129+ 130}{10}[/tex]

[tex]\bar x = \frac{1037}{10}[/tex]

[tex]\bar x_2 = 103.7[/tex]

Then standard deviation

[tex]\sigma_2 = \sqrt{\frac{(75 - 103.7)^2 +................+ (130- 103.7)^2}{10}}[/tex]

[tex]\sigma_2 = \sqrt{\frac{3538.1}{10}}[/tex]

[tex]\sigma_2 = \sqrt{353.81[/tex]

[tex]\sigma_2 = 18.81[/tex]

Compare the standard deviations

[tex]\sigma_1 = 15.88[/tex]

[tex]\sigma_2 = 18.81[/tex]

Calculate the difference:

[tex]d = \sigma_2 - \sigma_1[/tex]

[tex]d = 18.81 - 15.88[/tex]

[tex]d = 2.93[/tex]

[tex]d \approx 3[/tex]

This implies that option (b) is true

Ver imagen MrRoyal