PLEASE HELPP !! The ceiling of Stacy's living room is a square that is 25 ft long on each side. Stacy knows the diagonal of the ceiling from corner to corner must be longer than 25 ft, but she doesn't know how long it is. Solve for the length of the diagonal of Stacy's ceiling in two ways: (a) Using the Pythagorean Theorem. (b) Using trigonometry . Round each answer to the nearest whole number and make sure to show all your work( Hint: the answers should be the same!)

Respuesta :

Answer:

a) d = 36 ft. ( using Pithagoras´theorem )

b) d = 36 ft  ( Using ( function sin ) trigonometry

Step-by-step explanation:

a) Using Pythagoras´Theorem:

Diagonal (d) is the hypothenuse of a right triangle of side 25 feet, and according to Pythagoras´Theorem in a right triangle.

d²  =  a²  +  b²  

In this particular case  a =  b  =  25 feet then

d² =  (25)²  +  ( 25)²

d  = √ 2 * (25)²

d  = √2   * 25

d  =  1,414*25

d  =  35,35

d = 36 ft.

b) Using trigonometry:

We know that sin 45° = cos 45° =  √2 / 2

In a right triangle

sin α  =  opposite side / hypothenuse (d)

sin 45°  =  √2 / 2   =  25/ d

√2 *d  =  2* 25

d  =  50/√2

d  =  50 / 1,414

d  =  35,36

d = 36 ft