The point P(7, −3) lies on the curve y = 3/(6 − x). (a) If Q is the point (x, 3/(6 − x)), use your calculator to find the slope mPQ of the secant line PQ (correct to six decimal places) for the following values of x. (i) 6.9 mPQ = 1

Respuesta :

Answer:

The right answer is "3.33333".

Step-by-step explanation:

The given points in the question are:

[tex]P=(7,-3) = (x_1,y_1)[/tex]

[tex]Q=(x,\frac{3}{6-x} )=(x_2,y_2)[/tex]

Now,

The slope of PQ will be:

= [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]

By putting the values, we get

= [tex]\frac{\frac{3}{6-x}+3 }{x-7}[/tex]

= [tex]\frac{3+18-3x}{(6-x)(x-7)}[/tex]

= [tex]\frac{21-3x}{(6-x)(x-7)}[/tex]

= [tex]\frac{3(x-7)}{(6-x)(x-7)}[/tex]

= [tex]\frac{3}{x-6}[/tex]

hence,

x = 6.9

it's slope will be:

= [tex]3.33333[/tex]