A block of mass m slides along a frictionless surface with kinetic energy Kiit collides with a block of mass 3m that is initially at rest, and the two blocks stick together and slide with total kinetic energy Kf . What is the ratio Kf:Ki

Respuesta :

Answer:

the ratio Kf : Ki is  1 / 4 or 1 : 4

Explanation:

Given the data in the question;

Since this is a perfectly inelastic collision, momentum is conserved;

[tex]P_{initial[/tex] = [tex]P_{final[/tex]

Now for BLOCK 1

mass = M₁ = M

KE = K[tex]_i[/tex]

[tex]\frac{1}{2}[/tex]mv[tex]_i[/tex]₁² = K[tex]_i[/tex]

we solve for v[tex]_i[/tex]₁

mv[tex]_i[/tex]₁² = 2K[tex]_i[/tex]

v[tex]_i[/tex]₁ = √( 2K[tex]_i[/tex] / m )

for BLOCK 2

mass = M₂ = 3m and since its at rest v[tex]_i[/tex]₂ = 0

Now after the collision; Total mass = m + 3m = 4m

KE = K[tex]_f[/tex]

[tex]\frac{1}{2}[/tex]( 4m )v[tex]_f[/tex]² = K[tex]_f[/tex]

(2m)v[tex]_f[/tex]² = K[tex]_f[/tex]

v[tex]_f[/tex] = √(K[tex]_f[/tex] / 2m)

so since [tex]P_{initial[/tex] = [tex]P_{final[/tex]

[m₁ × v[tex]_i[/tex]₁] + [m₂ × v[tex]_i[/tex]₂] = ( m + 3m ) × v[tex]_f[/tex]

so

[ m₁ × √( 2K[tex]_i[/tex] / m ) ] + [ m₂ × 0 ] = ( m + 3m ) × [ √(K[tex]_f[/tex] / 2m) ]

[ m × √( 2K[tex]_i[/tex] / m ) ] = 4m × [ √(K[tex]_f[/tex] / 2m) ]

square both side

m² ×  2K[tex]_i[/tex] / m  = (4m)² × K[tex]_f[/tex] / 2m

m² ×  2K[tex]_i[/tex] / m  = 16m² × K[tex]_f[/tex] / 2m

m × 2K[tex]_i[/tex]  = 8m × K[tex]_f[/tex]

2K[tex]_i[/tex]  =  8K[tex]_f[/tex]

K[tex]_f[/tex] = 2K[tex]_i[/tex] / 8

K[tex]_f[/tex] / K[tex]_i[/tex] = 2 / 8

K[tex]_f[/tex] / K[tex]_i[/tex] = 1 / 4

Therefore,  the ratio Kf : Ki is  1 / 4 or 1 : 4

The ratio of the final kinetic energy to initial kinetic energy of the blocks is determined as 1:4.

Final speed of the blocks after collision

The speed of the two blocks after collision is determined by applying the principle of conservation of linear momentum as follows;

m1u1 + m2u2 = v(m1 + m2)

mu1 + m2(0) = v(m + 3m)

mu1 = v(4m)

u1 = 4v

Ratio of the final kinetic energy to initial kinetic energy

[tex]\frac{K.E_f}{K.E_i} = \frac{0.5(4m)v_f^2}{0.5(m)u_1^2} \\\\\frac{K.E_f}{K.E_i} = \frac{4(v_f)^2}{u_1^2} \\\\\frac{K.E_f}{K.E_i} = \frac{4v_f^2}{(4v_f)^2} = \frac{4v_f^2}{16v_f^2} = \frac{1}{4} = 1:4[/tex]

Learn more about kinetic energy here: https://brainly.com/question/25959744

#SPJ5