Respuesta :

Answer:

[tex]\tan(\theta) \cdot \cot(\theta) + \csc(\theta) = \frac{5 - 3\sqrt 5}{5}[/tex]

Step-by-step explanation:

Given

[tex]\cos(\theta) = -\frac{2}{3}[/tex]

[tex]\theta \to[/tex] Quadrant III

Required

Determine [tex]\tan(\theta) \cdot \cot(\theta) + \csc(\theta)[/tex]

We have:

[tex]\cos(\theta) = -\frac{2}{3}[/tex]

We know that:

[tex]\sin^2(\theta) + \cos^2(\theta) = 1[/tex]

This gives:

[tex]\sin^2(\theta) + (-\frac{2}{3})^2 = 1[/tex]

[tex]\sin^2(\theta) + (\frac{4}{9}) = 1[/tex]

Collect like terms

[tex]\sin^2(\theta) = 1 - \frac{4}{9}[/tex]

Take LCM and solve

[tex]\sin^2(\theta) = \frac{9 -4}{9}[/tex]

[tex]\sin^2(\theta) = \frac{5}{9}[/tex]

Take the square roots of both sides

[tex]\sin(\theta) = \±\frac{\sqrt 5}{3}[/tex]

Sin is negative in quadrant III. So:

[tex]\sin(\theta) = -\frac{\sqrt 5}{3}[/tex]

Calculate [tex]\csc(\theta)[/tex]

[tex]\csc(\theta) = \frac{1}{\sin(\theta)}[/tex]

We have: [tex]\sin(\theta) = -\frac{\sqrt 5}{3}[/tex]

So:

[tex]\csc(\theta) = \frac{1}{-\frac{\sqrt 5}{3}}[/tex]

[tex]\csc(\theta) = \frac{-3}{\sqrt 5}[/tex]

Rationalize

[tex]\csc(\theta) = \frac{-3}{\sqrt 5}*\frac{\sqrt 5}{\sqrt 5}[/tex]

[tex]\csc(\theta) = \frac{-3\sqrt 5}{5}[/tex]

So, we have:

[tex]\tan(\theta) \cdot \cot(\theta) + \csc(\theta)[/tex]

[tex]\tan(\theta) \cdot \cot(\theta) + \csc(\theta) = \tan(\theta) \cdot \frac{1}{\tan(\theta)} + \csc(\theta)[/tex]

[tex]\tan(\theta) \cdot \cot(\theta) + \csc(\theta) = 1 + \csc(\theta)[/tex]

Substitute: [tex]\csc(\theta) = \frac{-3\sqrt 5}{5}[/tex]

[tex]\tan(\theta) \cdot \cot(\theta) + \csc(\theta) = 1 -\frac{3\sqrt 5}{5}[/tex]

Take LCM

[tex]\tan(\theta) \cdot \cot(\theta) + \csc(\theta) = \frac{5 - 3\sqrt 5}{5}[/tex]