Respuesta :

Given:

The quadratic equation is:

[tex]x^2-32x+54=0[/tex]

It can be written as [tex]-p=202[/tex].

To find:

The value of p in the rewritten equation.

Solution:

We have,

[tex]x^2-32x+54=0[/tex]

Isolate the constant term.

We need to make 202 on the right side. So, add 256 on both sides.

[tex]x^2-32x+256=-54+256[/tex]

[tex]x^2-32x+256=202[/tex]

[tex]-(-x^2+32x-256)=202[/tex]

Let [tex]-x^2+32x-256=p[/tex], then

[tex]-p=202[/tex]

Therefore, the value of p is [tex]-x^2+32x-256[/tex].

The given equation can be written as:

[tex]54=-x^2+32x[/tex]

Adding 148 on both sides, we get

[tex]54+148=-x^2+32x+148[/tex]

[tex]202=-(x^2-32x-148)[/tex]

Let [tex]x^2-32x-148=p[/tex], then

[tex]202=-p[/tex]

Therefore, the another possible value of p is [tex]x^2-32x-148[/tex].