Write the function for the graph.
(1,12)
(0,3)
O A. f(x) = 3•(12)^x
O B. f(x) = 4•(3)^x
O C. f(x) = 3•(4)^x
D. f(x) = 4•(12)^x

Respuesta :

Answer:

[tex]f(x) =3 * (4)^x[/tex]

Step-by-step explanation:

Given

[tex](x_1, y_1) = (1,12)[/tex]

[tex](x_2, y_2) = (0,3)[/tex]

Required

The function of the graph (exponential function)

An exponential function is represented as:

[tex]f(x) = ab^x[/tex]

For [tex](x_1, y_1) = (1,12)[/tex], we have:

[tex]12 = a * b^1[/tex]

[tex]12 = a * b[/tex]

[tex]12 = a b[/tex]

For [tex](x_2, y_2) = (0,3)[/tex]

[tex]3 = a * b^0[/tex]

[tex]3 = a * 1[/tex]

[tex]3 = a[/tex]

[tex]a = 3[/tex]

Substitute: [tex]a = 3[/tex] in [tex]12 = a b[/tex]

[tex]12 = 3 * b[/tex]

Divide both sides by 3

[tex]4 = b[/tex]

[tex]b =4[/tex]

So, we have:

[tex]f(x) = ab^x[/tex]

[tex]f(x) =3 * (4)^x[/tex]