Respuesta :

Answer:

[tex]Area =55.4ft^2[/tex]

Step-by-step explanation:

Given

The attached rhombus

Required

The area

First, calculate the length of half the vertical diagonal (x).

Length x is represented as the adjacent to 60 degrees

So, we have:

[tex]\tan(60) = \frac{4\sqrt 3}{x}[/tex]

Solve for x

[tex]x = \frac{4\sqrt 3}{\tan(60)}[/tex]

[tex]\tan(60) = \sqrt 3[/tex]

So:

[tex]x = \frac{4\sqrt 3}{\sqrt 3}[/tex]

[tex]x = 4[/tex]

At this point, we have established that the rhombus is made up 4 triangles of the following dimensions

[tex]Base = 4\sqrt 3[/tex]

[tex]Height = 4[/tex]

So, the area of the rhombus is 4 times the area of 1 triangle

[tex]Area = 4 * \frac{1}{2} * Base * Height[/tex]

[tex]Area = 4 * \frac{1}{2} * 4\sqrt 3 * 4[/tex]

[tex]Area =2 * 4\sqrt 3 * 4[/tex]

[tex]Area =55.4ft^2[/tex]