Respuesta :

Given:

The expression is:

[tex]\dfrac{1-\cos 2x}{1+\cos 2x}[/tex]

To find:

The integration of the given expression.

Solution:

We need to find the integration of [tex]\dfrac{1-\cos 2x}{1+\cos 2x}[/tex].

Let us consider,

[tex]I=\int \dfrac{1-\cos 2x}{1+\cos 2x}dx[/tex]

[tex]I=\int \dfrac{2\sin^2x}{2\cos^2x}dx[/tex]         [tex][\because 1+\cos 2x=2\cos^2x,1-\cos 2x=2\sin^2x][/tex]

[tex]I=\int \dfrac{\sin^2x}{\cos^2x}dx[/tex]

[tex]I=\int \tan^2xdx[/tex]                      [tex]\left[\because \tan \theta =\dfrac{\sin \theta}{\cos \theta}\right][/tex]

It can be written as:

[tex]I=\int (\sec^2x-1)dx[/tex]             [tex][\because 1+\tan^2 \theta =\sec^2 \theta][/tex]

[tex]I=\int \sec^2xdx-\int 1dx[/tex]

[tex]I=\tan x-x+C[/tex]

Therefore, the integration of [tex]\dfrac{1-\cos 2x}{1+\cos 2x}[/tex] is [tex]I=\tan x-x+C[/tex].