icarbs
contestada

WILL GIVE BRAINLIEST IF RIGHT IG....PLEASE get it RIGHT....
find the volume of a cone with a diameter of 12m and a height of 8m.
ANSWER CHOICES
oA. 96m^3
oB. 384 pi m^3
oC. 96 pi m^3
oD. 288 pi m^3

Respuesta :

Answer:

V = 96 pi m^3

Step-by-step explanation:

V = (1/3) pi(r^2)h

Radius = 1/2(Diameter)

R = 1/2(12)

R = 6

Input.  

V = (1/3) pi(6^2)8

Solve.

V = (1/3) pi(36)8

V = (1/3) 904.32

V = 301.44

V = 301.44/pi

V = 96 pi m^3

Answer:

The correct answer is option (C) 96π m³.

Step-by-step explanation:

As per given question we have provided that :

  • Diameter = 12 m
  • Radius = 12/2 = 6 m
  • Height = 8 m

Here's the required formula to find the volume of cone :

[tex]{\longrightarrow{\pmb{\sf{V_{(Cone)} = \dfrac{1}{3}\pi{r}^{2}h}}}}[/tex]

  • ➝ V = Volume
  • ➝ π = 22/7
  • ➝ r = radius
  • ➝ h = height

Substituting all the given values in the formula to find the volume of cone :

[tex]{\implies{\sf{V_{(Cone)} = \dfrac{1}{3}\pi{r}^{2}h}}}[/tex]

[tex]{\implies{\sf{V_{(Cone)} = \dfrac{1}{3}\pi{(6)}^{2}8}}}[/tex]

[tex]{\implies{\sf{V_{(Cone)} = \dfrac{1}{3}\pi{(6 \times 6)}8}}}[/tex]

[tex]{\implies{\sf{V_{(Cone)} = \dfrac{1}{3}\pi \times {(36)} \times 8}}}[/tex]

[tex]{\implies{\sf{V_{(Cone)} = \dfrac{1}{3} \times \pi \times 36 \times 8}}}[/tex]

[tex]{\implies{\sf{V_{(Cone)} = \dfrac{1}{\cancel{3}} \times \pi \times \cancel{36} \times 8}}}[/tex]

[tex]{\implies{\sf{V_{(Cone)} = \pi \times 12 \times 8}}}[/tex]

[tex]{\implies{\sf{V_{(Cone)} = \pi \times 96}}}[/tex]

[tex]{\implies{\sf{V_{(Cone)} =96\pi}}}[/tex]

[tex]\star{\underline{\boxed{\sf{\red{V_{(Cone)} =96\pi \: {m}^{3}}}}}}[/tex]

Hence, the volume of cone is 96π m³.

[tex]\rule{300}{2.5}[/tex]