Light of wavelength 519 nm passes through two slits. In the interference pattern on a screen 4.6 m away, adjacent bright fringes are separated by 4.0 mm. What is the separation of the two slits

Respuesta :

Answer:

The appropriate solution is "0.597 mm".

Explanation:

Given that:

Wavelength,

[tex]\lambda = 519 \ nm[/tex]

or,

  [tex]=519\times 10^{-9}[/tex]

Distance,

[tex]D=4.6 \ m[/tex]

Separated by,

[tex]\beta = 4.0 \ mm[/tex]

or,

   [tex]=4.0\times 10^{-3}[/tex]

As we know,

⇒ [tex]\beta=\frac{\lambda D}{d}[/tex]

or,

The separation of two slits will be:

⇒ [tex]d=\frac{\lambda D}{\beta}[/tex]

By putting the values, we get

       [tex]=\frac{(519\times 10^{-9})(4.6)}{4.0\times 10^{-3}}[/tex]

       [tex]=5.97\times 10^{-4}[/tex]

or,

       [tex]=0.597 \ mm[/tex]