contestada

Determine if a quadrilateral with the given vertices is an isosceles trapezoid. Show and explain all steps to prove or disprove.
A(-5,0) B(5,0) C(-3, 4) D(3, 4)

Respuesta :

By satisfying all the four criteria, the quadrilateral with the vertices A(x, y) = (-5, 0), B(x, y) = (5, 0), C(x, y) = (-3, 4) and D(x, y) = (3, 4) is an isosceles trapezoid.

How to determine if a quadrilateral is an isosceles trapezoid

Based on vectorial expressions, an isosceles trapezoid satisfies the following properties:

(i) [tex]\overrightarrow{CD} = k \cdot \overrightarrow{AB}[/tex], for k ∈ [tex]\mathbb{R}[/tex]    

(ii) AB ≠ CD    

(iii) [tex]\overrightarrow{AC} \neq \overrightarrow {BD}[/tex]  

(iv) AC = BD

Now we proceed to prove each property:

Requisite I

(3 - (-3), 4 - 4) = (6, 0)

(5 - (-5), 0 - 0) = (10, 0)

(6, 0) = (5/3) · (10, 0)


Requisite II

AB = 6, CD = 10

AB ≠ CD

Requisite III

[tex]\overrightarrow{AC} = (2, 4)[/tex]

[tex]\overrightarrow{BD} = (-2, 4)[/tex]

[tex]\overrightarrow{AC} \neq \overrightarrow {BD}[/tex]

Requisite IV

[tex]AC = \sqrt{[-3-(-5)]^{2}+(4-0)^{2}}[/tex]

[tex]AC = \sqrt{2^{2}+4^{2}}[/tex]

[tex]AC = 2\sqrt{5}[/tex]

[tex]BD = \sqrt{(3-5)^{2}+(4-0)^{2}}[/tex]

[tex]BD = \sqrt{(-2)^{2}+4^{2}}[/tex]

[tex]BD = 2\sqrt{5}[/tex]

AC = BD

The figure with the entire quadrilateral is shown below. Therefore, the quadrilateral with the vertices A(x, y) = (-5, 0), B(x, y) = (5, 0), C(x, y) = (-3, 4) and D(x, y) = (3, 4) is an isosceles trapezoid.

To learn more on quadrilaterals: https://brainly.com/question/25240753

#SPJ1

Ver imagen xero099